Building Program Vector Representations for Deep Learning

نویسندگان

  • Hao Peng
  • Lili Mou
  • Ge Li
  • Yuxuan Liu
  • Lu Zhang
  • Zhi Jin
چکیده

Deep learning has made significant breakthroughs in various fields of artificial intelligence. Advantages of deep learning include the ability to capture highly complicated features, weak involvement of human engineering, etc. However, it is still virtually impossible to use deep learning to analyze programs since deep architectures cannot be trained effectively with pure back propagation. In this pioneering paper, we propose the “coding criterion” to build program vector representations, which are the premise of deep learning for program analysis. Our representation learning approach directly makes deep learning a reality in this new field. We evaluate the learned vector representations both qualitatively and quantitatively. We conclude, based on the experiments, the coding criterion is successful in building program representations. To evaluate whether deep learning is beneficial for program analysis, we feed the representations to deep neural networks, and achieve higher accuracy in the program classification task than “shallow” methods, such as logistic regression and the support vector machine. This result confirms the feasibility of deep learning to analyze programs. It also gives primary evidence of its success in this new field. We believe deep learning will become an outstanding technique for program analysis in the near future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs

In this paper, we present subgraph2vec, a novel approach for learning latent representations of rooted subgraphs from large graphs inspired by recent advancements in Deep Learning and Graph Kernels. These latent representations encode semantic substructure dependencies in a continuous vector space, which is easily exploited by statistical models for tasks such as graph classification, clusterin...

متن کامل

Convolutional Neural Networks over Tree Structures for Programming Language Processing

Deep neural networks have made significant breakthroughs in many fields of artificial intelligence. However, it has not been applied in the field of programming language processing. In this paper, we propose the treebased convolutional neural network (TBCNN) to model programming languages, which contain rich and explicit tree structural information. In our model, program vector representations ...

متن کامل

Building Graph Representations of Deep Vector Embeddings

Patterns stored within pre-trained deep neural networks compose large and powerful descriptive languages that can be used for many different purposes. Typically, deep network representations are implemented within vector embedding spaces, which enables the use of traditional machine learning algorithms on top of them. In this short paper we propose the construction of a graph embedding space in...

متن کامل

Unsupervised feature learning on monaural DOA estimation using convolutional deep belief networks

In recent years, deep learning approaches have gained significant interest as a way of building hierarchical representations from unlabeled data. Additionally, in the field of sound direction-of-arrival (DOA) estimation, the binaural features like interaural time or phase difference and interaural level difference, or monaural cues like spectral peaks and notches are often used to estimate soun...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015